The spectrum and convergence rates of exclusion and interchange processes on the complete graph
نویسندگان
چکیده
We give a short and completely elementary method to find the full spectrum of the exclusion process and a nicely limited superset of the spectrum of the interchange process (a.k.a. random transpositions) on the complete graph. In the case of the exclusion process, this gives a simple closed form expression for all the eigenvalues and their multiplicities. This result is then used to give an exact expression for the distance in L from stationarity at any time and upper and lower bounds on the convergence rate for the exclusion process. In the case of the interchange process, upper and lower bounds are similarly found. Our results strengthen or reprove all known results of the mixing time for the two processes in a very simple way. AMS Subject classification : 60J10, 05C81
منابع مشابه
An Improved Token-Based and Starvation Free Distributed Mutual Exclusion Algorithm
Distributed mutual exclusion is a fundamental problem of distributed systems that coordinates the access to critical shared resources. It concerns with how the various distributed processes access to the shared resources in a mutually exclusive manner. This paper presents fully distributed improved token based mutual exclusion algorithm for distributed system. In this algorithm, a process which...
متن کاملComplete convergence of moving-average processes under negative dependence sub-Gaussian assumptions
The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.
متن کاملDeciding Graph non-Hamiltonicity via a Closure Algorithm
We present a matching and LP based heuristic algorithm that decides graph non-Hamiltonicity. Each of the n! Hamilton cycles in a complete directed graph on n + 1 vertices corresponds with each of the n! n-permutation matrices P, such that pu,i = 1 if and only if the ith arc in a cycle enters vertex u, starting and ending at vertex n + 1. A graph instance (G) is initially coded as exclusion set ...
متن کاملTHE SPECTRAL DETERMINATION OF THE MULTICONE GRAPHS Kw ▽ C WITH RESPECT TO THEIR SIGNLESS LAPLACIAN SPECTRA
The main aim of this study is to characterize new classes of multicone graphs which are determined by their signless Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let C and K w denote the Clebsch graph and a complete graph on w vertices, respectively. In this paper, we show that the multicone graphs K w ▽C are determined by their signless ...
متن کاملLaplacian Energy of a Fuzzy Graph
A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015